Abstract: Fuzzy classification models are important for handling uncertainty and heterogeneity in high-dimensional data. Although recent fuzzy logistic regression approaches have demonstrated ...
Background Annually, 4% of the global population undergoes non-cardiac surgery, with 30% of those patients having at least ...
A complete implementation of Logistic Regression with Gradient Descent optimization from scratch using only NumPy, demonstrating mathematical foundations of binary classification for diabetes ...
ABSTRACT: Heart disease remains one of the leading causes of mortality worldwide, accounting for millions of deaths annually. Early detection of individuals at risk is essential for reducing ...
1 School of Computing and Data Science, Wentworth Institute of Technology, Boston, USA. 2 Department of Computer Science and Quantitative Methods, Austin Peay State University, Clarksville, USA. 3 ...
The goal of a machine learning binary classification problem is to predict a variable that has exactly two possible values. For example, you might want to predict the sex of a company employee (male = ...
Introduction: This cross-sectional study investigates the interplay of lifestyle, behavioral, and psychosocial factors in predicting depressive symptoms among Chinese college students (N=508) using ...
Background: To establish a classification model for assisting the diagnosis of type 2 diabetes mellitus (T2DM) complicated with coronary heart disease (CHD). Methods: Patients with T2DM who underwent ...